SBV Regularity for Hamilton-Jacobi Equations with Hamiltonian Depending on (t, x)

نویسندگان

  • Stefano Bianchini
  • Daniela Tonon
چکیده

In this paper we prove the SBV regularity of the distributional derivative of a viscosity solution of the Hamilton-Jacobi equation ∂tu + H(t, x, Dxu) = 0 in Ω ⊂ [0, T ]× R, under the hypothesis of uniform convexity of the Hamiltonian H in the last variable. This result extends the result of Bianchini, De Lellis and Robyr obtained for an Hamiltonian H = H(Dxu) which depends only on the spatial distributional derivative of the solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bound Gradient Estimates for First-order Hamilton-jacobi Equations and Applications to the Regularity of Propagating Fronts

This paper is concerned with rst-order time-dependent Hamilton-Jacobi Equations. Exploiting some ideas of Barron and Jensen 9], we derive lower bound estimates for the gradient of a locally Lipschitz continuous viscosity solution u of equations with a convex Hamiltonian. Using these estimates in the context of the level-set approach to front propagation, we investigate the regularity properties...

متن کامل

Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton-Jacobi Equations with Superquadratic Growth in the Gradient

Viscosity solutions of fully nonlinear, local or non local, Hamilton-Jacobi equations with a super-quadratic growth in the gradient variable are proved to be Hölder continuous, with a modulus depending only on the growth of the Hamiltonian. The proof involves some representation formula for nonlocal Hamilton-Jacobi equations in terms of controlled jump processes and a weak reverse inequality.

متن کامل

De Giorgi Techniques Applied to the Hölder Regularity of Solutions to Hamilton-jacobi Equations

This article is dedicated to the proof of C regularization effects of HamiltonJacobi equations. The proof is based on the De Giorgi method. The regularization is independent on the regularity of the Hamiltonian.

متن کامل

Hölder estimates in space - time for viscosity solutions of Hamilton - Jacobi equations ∗

It is well-known that solutions to the basic problem in the calculus of variations may fail to be Lipschitz continuous when the Lagrangian depends on t. Similarly, for viscosity solutions to time-dependent Hamilton-Jacobi equations one cannot expect Lipschitz bounds to hold uniformly with respect to the regularity of coefficients. This phenomenon raises the question whether such solutions satis...

متن کامل

A Comparison Principle for Hamilton-jacobi Equations with Discontinuous Hamiltonians

We show a comparison principle for viscosity superand subsolutions to Hamilton-Jacobi equations with discontinuous Hamiltonians. The key point is that the Hamiltonian depends upon u and has a special structure. The supersolution must enjoy some additional regularity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2012